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Lecture 4: September 9

Families of varieties and Hodge structures. Our topic today is variations of
Hodge structure. Suppose we have a family of n-dimensional compact complex
manifolds parametrized by a curve; as in algebraic geometry, this means concretely
that we have a holomorphic mapping

f : X → B

from a complex manifold X of dimension n+1 to a complex manifold B of dimension
1. We assume that f is proper and submersive, so that all the fibers Xb = f−1(b)
are compact complex manifolds of dimension n. How do the cohomology groups of
the fibers depend on b ∈ B? Also, assuming that all the fibers are Kähler manifolds,
how do their Hodge structures vary? This question was studied systematically by
Phillip Griffiths in the late 1960s.

Let me briefly summarize the main results, from a “topological” point of view;
afterwards, we will reformulate and prove everything in a more algebraic way. First,
one has Ehresmann’s lemma, which says that all the fibers Xb are diffeomorphic
to each other. More precisely, if U ⊆ X is a neighborhood of some point b ∈ B
isomorphic to a disk, then f−1(U) is isomorphic, as a smooth manifold, to the
product U × Xb. This implies that the cohomology groups Hk(Xb,C) are locally
constant on B. In sheaf theory notation, the k-th higher direct image sheaf Rkf∗C
is locally constant, with stalks

(Rkf∗C)b ∼= Hk(Xb,C).

Now let us suppose that X is a Kähler manifold, with Kähler form ω; each fiber
Xb is then also a Kähler manifold, with Kähler form ωb = ω

∣∣
Xb

. As we have seen,

Hk(Xb,C) =
⊕

p+q=k

Hp,q(Xb)

has a polarized Hodge structure of weight k. Examples show that the Hodge decom-
position is typically not locally constant on B: in many interesting cases, such as
curves or K3-surfaces, the Hodge decomposition determines the complex structure
up to isomorphism; if the family is not locally trivial, the Hodge decomposition
therefore has to vary in a nontrivial way. To study this variation, we need to go
from the locally constant sheaf Rkf∗C to the associated holomorphic vector bundle

V k = OB ⊗C R
kf∗C.

To be precise, V k is the locally constant sheaf associated to the holomorphic vector
bundle with fibers Hk(Xb,C); this vector bundle has the same (locally constant)
transition functions as Rkf∗C. Because V k comes from a locally constant sheaf, it
has a natural connection

∇ : V k → Ω1
B ⊗OB V k,

called the Gauss-Manin connection. Namely, any local section s ∈ V k can be
written in the form s =

∑
gi ⊗ σi for holomorphic functions gi ∈ OB and sections

σi ∈ Rkf∗C, and then

∇(s) =
∑

dgi ⊗ σi.
To say that ∇ is a connection means that it satisfies the Leibniz rule

∇(gs) = dg ⊗ s+ g∇(s)

for local sections g ∈ OB and s ∈ V k. The Gauss-Manin connection is always a flat
connection – but since dimB = 1, this condition is vacuous in our setting. We can
recover the locally constant sheaf

Rkf∗C ⊆ V k
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as the subsheaf of ∇-flat sections.
Consider again the Hodge decomposition

Hk(Xb,C) =
⊕

p+q=k

Hp,q(Xb).

One can show that the Hodge numbers dimHp,q(Xb) are constant in b ∈ B: by
general theory, each function b 7→ dimHp,q(Xb) is upper semicontinuous, and their
sum equals the constant function b 7→ dimHk(Xb,C). However, the Hodge decom-
position does not vary holomorphically with b ∈ B, meaning that the subspaces
Hp,q(Xb) do not form holomorphic subbundles of V k. The reason is easy to see:
the definition of Hp,q(Xb) involves forms of type (p, q), and because of the anti-
holomorphic differentials, this is clearly not a holomorphic condition. The solution
is to consider instead the Hodge filtration

F pHk(Xb,C) =
⊕

i≥p
Hi,k−i(Xb).

The Hodge filtration is very natural from several points of view: for example, the
E1-degeneration of the Hodge-de Rham spectral sequence

Ep,q1 = Hq(Xb,Ω
p
Xb

) =⇒ Hp+q(Xb,C)

says exactly that the Hodge filtration is the filtration induced by the spectral se-
quence. Without extra information (such as a real structure or a polarization),
one cannot recover the Hodge decomposition from the Hodge filtration, but let us
defer this question until later. Anyway, Griffiths proved that the vector spaces
F pHk(Xb,C) fit together into holomorphic subbundles

F pV k ⊆ V k,

called the Hodge bundles. He also found the following famous relation:

∇(F pV k) ⊆ Ω1
B ⊗OB F

p−1V k

In other words, applying the Gauss-Manin connection to a section of F pV k does
not produce an arbitrary section of Ω1

B ⊗ V k, but it can only move you up to the
next Hodge bundle. Griffiths called this fact the “infinitesimal period relation”,
but it nowadays known as Griffiths transversality.

Lastly, how about the polarizations? Since the Kähler forms ωb are restrictions
of a Kähler form on X, the Lefschetz operators Lb : Hk(Xb,C)→ Hk+2(Xb,C) are
locally constant, and therefore define morphisms

L : Rkf∗C→ Rk+2f∗C.

Similarly, integration over the fibers defines a hermitian pairing

Rn+kf∗C⊗C R
n−kf∗C→ C,

where the bar over a sheaf of complex vector spaces means that we replace every
complex vector space by its conjugate. As explained in Lecture 3, we can put these
two facts together and obtain a hermitian pairing

Sk : Rkf∗C⊗C R
kf∗C→ C

that polarizes the Hodge structures on the stalks (Rkf∗C)b ∼= Hk(Xb,C). Since I
prefer to work with the holomorphic vector bundle V k, let me consider instead the
induced hermitian pairing

Sk : V k ⊗C V k → C∞B
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with values in the sheaf of C∞-functions on B. The formula is

Sk
(∑

g′i ⊗ σ′i,
∑

g′′j ⊗ σ′′j
)

=
∑

g′ig
′′
j S

k(σ′i, σ
′′
j ),

for local sections σ′i, σ
′′
j ∈ Rkf∗C and g′i, g

′′
j ∈ OB . By construction, this pairing is

flat, meaning that if s′, s′′ ∈ V k are local sections, one has

dSk(s′, s′′) = Sk(∇s′, s′′) + Sk(s′,∇s′′),
where the d on the left-hand side is the exterior derivative.

Algebraic construction of the flat bundle. All the above results are based on
the topological fact that the fibers Xb are diffeomorphic to each other. There is
another approach, due to Nick Katz and Tadao Oda, that uses algebraic methods.
The idea is to construct the holomorphic vector bundle V k and the Gauss-Manin
connection directly, without going through the locally constant sheaf Rkf∗C. This
has the advantage of showing very clearly where Griffiths transversality comes from.

As before, let f : X → B be a holomorphic mapping from a complex manifold
X of dimension n+ 1 to a complex manifold B of dimension 1, and suppose that f
is proper and submersive. By the holomorphic Poincaré lemma, the complex

0→ C→ OX → Ω1
X → · · · → Ωn+1

X → 0

is exact, and so the holomorphic de Rham complex Ω•X is a resolution of the constant
sheaf C. Using hypercohomology, this means that

Rkf∗C ∼= Rkf∗Ω
•
X .

The Katz-Oda construction is based on the relative version of the de Rham complex.
Since f is submersive, we have a short exact sequence

0→ f∗Ω1
B → Ω1

X → Ω1
X/B → 0,

with Ω1
X/B locally free of rank n. Taking wedge powers, and remembering that Ω1

B

is a line bundle, we get for each p a short exact sequence

0→ f∗Ω1
B ⊗OX Ωp−1

X/B → ΩpX → ΩpX/B → 0,

These fit together into a short exact sequence of complexes

(4.1) 0→ f∗Ω1
B ⊗OX Ω•−1

X/B → Ω•X → Ω•X/B → 0.

By the relative version of the holomorphic Poincaré lemma, the complex

0→ f−1OB → OX → Ω1
X/B → · · · → ΩnX/B → 0

is exact, and so the relative de Rham complex resolves the inverse image sheaf
f−1OB (whose sections are those holomorphic functions on X that are constant
along the fibers of f). The proof uses the fact that, in local coordinates, f is
represented by a coordinate projection Cn+1 → C, but it does not need any global
facts about the topology of X. Anyway, we obtain

Rkf∗Ω
•
X/B

∼= Rkf∗
(
f−1OB

) ∼= OB ⊗C R
kf∗C,

by a version of the projection formula.
Now let us turn things around and define

V k = Rkf∗Ω
•
X/B .

What can we say about V k? By a famous theorem due to Hans Grauert, the
higher direct image of a coherent sheaf under a proper holomorphic mapping is
again coherent. This result extends without problems to complexes of coherent
sheaves (using a spectral sequence argument), and so each V k is a coherent sheaf
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of OB-modules. It is also not hard to construct a connection on V k. Indeed,
consider the long exact sequence for the higher direct image sheaves of (4.1):

· · · → Rkf∗Ω
•
X → Rkf∗Ω

•
X/B → Rk+1

(
f∗Ω1

B ⊗OX Ω•−1
X/B

)
→ · · ·

After using the projection formula and the isomorphisms from above, this becomes

(4.2) · · · → Rkf∗C→ V k → Ω1
B ⊗OB V k → · · ·

and so the connecting morphism gives us a C-linear morphism

∇ : V k → Ω1
B ⊗OB V k

Note that ∇ is not OB-linear, because the differentials in the de Rham complex Ω•X
are not OB-linear. I will leave it as an exercise to check that ∇ is a connection.

Exercise 4.1. Verify that ∇ satisfies the Leibniz rule

∇(gs) = dg ⊗ s+ g∇(s)

for local sections g ∈ OB and s ∈ V k.

We can use the existence of the connection to show that V k is actually locally
free. This is based on the following lemma from D-module theory. We only need
the 1-dimensional version here, but the general statement is that, on any complex
manifold B, a coherent OB-module with a flat connection must be locally free. Some
of you may remember this result from my course on D-modules last semester.

Lemma 4.3. Let B be a complex manifold of dimension 1, and F a coherent sheaf
of OB-modules. If F admits a connection

∇ : F → Ω1
B ⊗OB F

then F is locally free.

Proof. I will give a simplified proof that only works in dimension 1, but that shows
the underlying idea very clearly. The problem is local, and so we let R = OB,b be
the local ring at a point b ∈ B; of course, R is isomorphic to the ring of convergent
power series in t, where t is a local coordinate at b. By assumption, the stalk
M = Fb is a finitely generated R-module, and if we apply the connection to the
vector field ∂t = ∂/∂t, we get an operator

δ = ∇∂t : M →M

that still satisfies the Leibniz rule:

δ(fm) = f ′m+ fδ(m),

where f ′ is the derivative of f with respect to t. Our goal is to show that M is a
free R-module, and since dimB = 1, it suffices to prove that M is torsion-free. So
consider the torsion submodule Mtor . It is again finitely generated, and because R
is local, there is an integer e ≥ 0 such that tem = 0 for every m ∈ Mtor . Let us
choose e ≥ 0 to be minimal with this property. The Leibniz rule for δ gives

0 = δ(tem) = ete−1m+ teδ(m),

and so te+1δ(m) = −etem = 0. But then δ(m) ∈ Mtor , and so we actually have
teδ(m) = 0. According to the formula above, ete−1m = 0, and the only way this
does not contradict the minimality of e is that e = 0. But then Mtor = 0, and so
M is indeed a free R-module. �
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We can now relate V k and ∇ to the earlier topological definition. Here the
key tool is the base change theorem (whose proof, given Grauert’s theorem, is
more or less the same as that of the algebraic version in Hartshorne). Recall that
following piece of terminology: one says that the sheaf Rkf∗Ω•X/B has the base

change property if the natural morphism

OB,b
mb
⊗OB R

kf∗Ω
•
X/B → Hk

(
Xb,Ω

•
X/B

∣∣
Xb

)

is an isomorphism for every b ∈ B. The right-hand side is of course just Hk(Xb,C),
because the relative de Rham complex restricted to Xb is isomorphic to Ω•Xb . So

the base change property means that the fiber of the coherent sheaf V k at a point
b ∈ B is isomorphic to Hk(Xb,C).

Now each sheaf in the complex Ω•X/B is locally free, hence flat over B (because

f : X → B is flat for dimension reasons), and f is proper. In this setting, the base
change theorem says the following: If for some integer k ∈ Z, all the higher direct
image sheaves Rjf∗Ω•X/B are locally free for j ≥ k + 1, then Rkf∗Ω•X/B has the

base change property. But we have just seen in Lemma 4.3 that each V k is actually
locally free, and so they all have the base change property. In particular, V k is a
holomorphic vector bundle with fibers Hk(Xb,C). Now recall from (4.2) that we
have an exact sequence

· · · → Rkf∗C→ V k ∇−→ Ω1
B ⊗OB V k → · · ·

Because the fiber of V k at a point b ∈ B is exactly Hk(Xb,C), the morphism
Rkf∗C→ V k must be injective, and so Rkf∗C is isomorphic to the sheaf of ∇-flat
sections of V k, hence locally constant. In particular, ∇ agrees with the Gauss-
Manin connection as defined earlier.

Algebraic construction of the Hodge bundles. Now let us construct the
Hodge bundles by the same algebraic approach. Suppose for a moment that X
is a compact Kähler manifold of dimension n. Then the Hodge-de Rham spectral
sequence

Ep,q1 = Hq(X,ΩpX) =⇒ Hp+q(X,C)

degenerates at E1, and the induced filtration is the Hodge filtration on Hk(X,C).
The Hodge-de Rham spectral sequence is the spectral sequence of a filtered complex,
namely of the de Rham complex Ω•X , filtered by the family of subcomplexes

0→ · · · → 0→ ΩpX → · · · → ΩnX → 0.

Let us denote the p-th subcomplex by the symbol F pΩ•X . By general theory, the
filtration induced by the spectral sequence is

Im
(
Hk
(
X,F pΩ•X

)
→ Hk

(
X,Ω•X

))
,

and so the E1-degeneration means exactly that the morphism

Hk
(
X,F pΩ•X

)
→ Hk

(
X,Ω•X

)

is injective for every k, p ∈ Z. The image therefore agrees with the Hodge filtration
on Hk(X,C), and we have

(4.4) Hk
(
X,F pΩ•X

) ∼= F pHk(X,C).

Now we return to our family f : X → B. The relative de Rham complex is again
filtered by the subcomplexes F pΩ•X/B , and if we put everything together, we get a
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commutative diagram with short exact rows:

0 f∗Ω1
B ⊗OX F

p−1Ω•−1
X/B F pΩ•X F pΩ•X/B 0

0 f∗Ω1
B ⊗OX Ω•−1

X/B Ω•X Ω•X/B 0

This gives us a commutative diagram for the connecting morphisms:

(4.5)

Rkf∗F pΩ•X/B Ω1
B ⊗OB R

kf∗F p−1Ω•X/B

Rkf∗Ω•X/B Ω1
B ⊗OB R

kf∗Ω•X/B

The morphism on the bottom is just our connection ∇ : V k → Ω1
B ⊗OB V k. The

following proposition now explains both why the Hodge bundles are vector bundles,
and why they satisfy Griffiths transversality.

Proposition 4.6. The morphism Rkf∗F pΩ•X/B → Rkf∗Ω•X/B is injective for every

k, p ∈ Z. The image is a holomorphic subbundle F pV k, whose fiber at a point b ∈ B
is isomorphic to F pHk(Xb,C).

Of course, Griffiths transversality relation ∇(F pV k) ⊆ Ω1
B⊗OB F

p−1V k is now a
simple consequence of the commutative diagram in (4.5). The proposition also gives
an alternative proof, without any topology, for the fact that the Hodge numbers

dimHp,k−p(Xb) = rkF pV k − rkF p+1V k

are independent of the point b ∈ B.

Proof. We use the base change theorem and the degeneration of the Hodge-de Rham
spectral sequence. Fix an integer p ∈ Z. Since Rkf∗F pΩ•X/B = 0 for k � 0, we can

argue by descending induction on k. Suppose we already know that Rjf∗F pΩ•X/B
injects into V k = Rkf∗Ω•X/B for every j ≥ k+1, hence is locally free (as dimB = 1).

The base change theorem tells us that Rkf∗F pΩ•X/B has the base change property,

which means that its fiber at any point b ∈ B is isomorphic to

Hk
(
Xb, F

pΩ•X/B
∣∣
Xb

)
∼= Hk

(
Xb, F

pΩ•Xb
)
.

On fibers, the morphism Rkf∗F pΩ•X/B → Rkf∗Ω•X/B therefore agrees with

Hk
(
Xb, F

pΩ•Xb
)
→ Hk

(
Xb,Ω

•
Xb

)
,

which is injective by the E1-degeneration of the Hodge-de Rham spectral sequence
on the compact Kähler manifold Xb. Since both sheaves are coherent, Nakayama’s
lemma implies that Rkf∗F pΩ•X/B → Rkf∗Ω•X/B is injective, and that the image is a

holomorphic subbundle F pV k ⊆ V k. By the base change property, this subbundle
has fibers F pHk(Xb,C), as claimed. �

Polarized variations of Hodge structure. Let me end this lecture by giving
the definition of a polarized variation of Hodge structure. It is obtained by taking
all the features that we found in the geometric setting. I remind you that B is
a complex manifold of dimension 1; in higher dimensions, one needs to add the
assumption that ∇ is a flat connection.

Definition 4.7. Let n ∈ Z. A polarized variation of Hodge structure of weight n
on B consists of the following data:
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(a) A holomorphic vector bundle V with a connection ∇ : V → Ω1
B ⊗OB V .

(b) A decreasing filtration by holomorphic subbundles F pV , called the Hodge
filtration, such that ∇(F pV ) ⊆ Ω1

B ⊗OB F
p−1V .

(c) A hermitian pairing h : V ⊗C V → C∞B , which is “flat”, in the sense that
dh(s′, s′′) = h(∇s′, s′′) + h(s′,∇s′′) for all local sections s′, s′′ ∈ V .

The requirement is that, for every point b ∈ B, the fiber Vb, together with the
induced pairing hb : Vb ⊗C Vb → C and the filtration by the subspaces F pVb ⊆ Vb,
must come from a Hodge structure of weight n.

Here “come from” means that each Vb has a Hodge structure of weight n, say

Vb =
⊕

p+q=n

V p,qb ,

which is polarized by the pairing Sb, such that

F pVb =
⊕

i≥p
V i,n−ib .

I will explain next time how the polarization allows one to recover the Hodge
decomposition from the Hodge filtration.

Note. The fact that F pV is a holomorphic subbundle means that the subquotients

grpF V = F pV /F p+1V

are again locally free. These subquotients are also sometimes referred to as “Hodge
bundles”.

Exercise 4.2. Suppose that H =
⊕

p+q=nH
p,q is a Hodge structure of weight n,

and h a polarization. Explain how one can recover the subspaces Hp,q from the
Hodge filtration F pH with the help of h.
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